\square

Fourth Semester B.E. Degree Examination, July/August 2022 Advanced Mathematics - II

Time: 3 hrs .
Max. Marks: 100

Note: Answer any FIVE full questions.

1 a. Prove that the sum of the squares of the direction cosines in equal to unity.
(06 Marks)
b. If $\cos \alpha, \cos \beta, \cos \gamma$ are the direction cosines of a line. Prove that
(i) $\sin ^{2} \alpha+\sin ^{2} \beta+\sin ^{2} \gamma=2$
(ii) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=-1$
(07 Marks)
c. Find the image of the point $(2,-1,3)$ in the plane $2 x+4 y+z-24=0$.
(07 Marks)
2 a. Find the equation of the plane in the intercept form.
(06 Marks)
b. Find the equation of the plane which passes through $(3,-3,1)$ and is perpendicular to the planes $7 x+y+2 z=6$ and $3 x+5 y-6 z=8$.
(07 Marks)
c. Show that the lines $\frac{x-5}{4}=\frac{y-7}{4}=\frac{z+3}{-5}$ and $\frac{x-8}{7}=\frac{y-4}{1}=\frac{z-5}{3}$ are coplanar. Find their
common point.
(07 Marks)

3 a. Find sine of the angle between the vectors $2 \hat{i}-2 \hat{j}+\hat{k}$ and $\hat{i}-2 \hat{j}+2 \hat{k}$.
(06 Marks)
b. Find the constant ' a ' such that the vectors $2 \hat{i}-\hat{j}+\hat{k}, \hat{i}+2 \hat{j}-3 \hat{k}$ and $3 \hat{i}+a \hat{j}+5 \hat{k}$ are coplanar.
(07 Marks)
c. Prove that $[\overrightarrow{\mathrm{a}} \times \overrightarrow{\mathrm{b}}, \overrightarrow{\mathrm{b}} \times \overrightarrow{\mathrm{c}}, \overrightarrow{\mathrm{c}} \times \overrightarrow{\mathrm{a}}]=[\overrightarrow{\mathrm{a}} \overrightarrow{\mathrm{b}} \overrightarrow{\mathrm{c}}]^{2}$
(07 Marks)
4 a. A particle moves along the curve $x=1-t^{3}, y=1+t^{2}, z=2 t-5$ where t is the time. Find the velocity and acceleration at $\mathrm{t}=1$.
(06 Marks)
b. Find the unit normal vector to the surface $x y+x+z x=3$ at $(1,1,1)$.
(07 Marks)
c. Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $x=z^{2}+y^{2}-3$ at the point (2, -1, 2).
(07 Marks)
5 a. Find the directional derivative of $\phi=x^{2} y z+x z^{2}$ at the point $(-1,2,1)$ in the direction of $2 \hat{i}-\hat{j}-2 \hat{k}$.
(06 Marks)
b. Show that the vectors $\vec{F}=\left(2 x y+z^{2}\right) i+\left(x^{2}+2 x y\right) j+\left(y^{2}+2 z x\right) k$ is irrotational.
(07 Marks)
c. Given that $\vec{F}=(x+y+1) \hat{i}+\hat{j}-(x+y) \hat{k}$, show that $\vec{F} \cdot \operatorname{curl} \overrightarrow{\mathrm{~F}}=0$.
(07 Marks)

6 a. Using the definition show that $L\left[t^{n}\right]=\frac{\mathrm{n}!}{\mathrm{s}^{\mathrm{n}+1}}$.
(05 Marks)
b. Find $L[t \cos a t]$.
(05 Marks)
c. Find $L\left[\frac{\cos a t-\cos b t}{t}\right]$.
d. Find $L[\cos (a t+b)]$.

7 a. Find $\mathrm{L}^{-1}\left[\frac{\mathrm{~s}^{2}-3 \mathrm{~s}+4}{\mathrm{~s}^{3}}\right]$.
b. Find $\mathrm{L}^{-1}\left[\frac{\mathrm{~s}+2}{\mathrm{~s}^{2}-4 \mathrm{~s}+13}\right]$.

c. Find $L^{-1}\left[\frac{s^{2}+s-2}{s(s+3)(s-2)}\right]$.
d. Find $\mathrm{L}^{-1}\left[\log \frac{(\mathrm{~s}+\mathrm{a})}{(\mathrm{s}+\mathrm{b}}\right]$.

8 a. Using Laplace Transform method solve $y^{\prime \prime}+2 y^{\prime}-3 y=\sin t$ subject to the condition, $y(0)=y^{\prime}(0)=0$.
(10 Marks)
b. By applying Laplace transform, solve the differential equation $y^{\prime \prime}+4 y^{\prime}+3 y=0$ subject to the condition $\mathrm{y}(0)=0$ and $\mathrm{y}^{\prime}(0)=1$.
(10 Marks)

