

Fourth Semester B.E. Degree Examination, July/August 2022 Advanced Mathematics – II

Time: 3 hrs.

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

Max. Marks:100

Note: Answer any FIVE full questions.

 b. If cosa, cosp, cosp are the direction cosines of a line. Prove that (i) sin² α + sin² β + sin² γ = 2. (ii) cos 2α + cos 2β + cos 2γ = -1 c. Find the image of the point (2, -1, 3) in the plane 2x + 4y + z - 24 = 0. (07 Marks 2 a. Find the equation of the plane in the intercept form. (06 Marks b. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y - 6z = 8. (07 Marks c. Show that the lines x -5/4 = y - 7/4 = z + 3/-5 and x - 8/7 = y - 4/1 = z - 5/3 are coplanar. Find the common point. 3 a. Find sine of the angle between the vectors 2î - 2ĵ + k̂ and î - 2ĵ + 2k̂. (06 Marks b. Find the constant 'a' such that the vectors 2î - ĵ + k̂, î + 2ĵ - 3k̂ and 3î + aĵ + 5k̂ ar 	5)
 (i) sin α + sin β + sin γ = 2. (ii) cos 2α + cos 2β + cos 2γ = -1 (07 Marks c. Find the image of the point (2, -1, 3) in the plane 2x + 4y + z - 24 = 0. (07 Marks 2 a. Find the equation of the plane in the intercept form. (06 Marks b. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y - 6z = 8. (07 Marks c. Show that the lines x -5/4 = y - 7/4 = z + 3/-5 and x - 8/7 = y - 4/1 = z - 5/3 are coplanar. Find the common point. 3 a. Find sine of the angle between the vectors 2î - 2ĵ + k̂ and î - 2ĵ + 2k̂. (06 Marks b. Find the constant 'a' such that the vectors 2î - ĵ + k̂, î + 2ĵ - 3k̂ and 3î + aĵ + 5k̂ are 	
 c. Find the image of the point (2, -1, 3) in the plane 2x + 4y + z - 24 = 0. (07 Marks 2 a. Find the equation of the plane in the intercept form. (06 Marks b. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y - 6z = 8. (07 Marks c. Show that the lines \$\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}\$ and \$\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}\$ are coplanar. Find the common point. (07 Marks 3 a. Find sine of the angle between the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$ and \$\hat{i} - 2\hat{j} + 2\hat{k}\$. (06 Marks b. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ and \$3\hat{j} + a\hat{j} + 5\hat{k}\$ and \$3\hat{k} + a\hat{k} + a\hat{k} + a\hat{k}\$ and \$3\hat{k} + a\hat{k} + a\hat{k}\$ and \$3\h	3)
 2 a. Find the equation of the plane in the intercept form. (06 Marks b. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y - 6z = 8. (07 Marks c. Show that the lines x -5/4 = y -7/4 = z + 3/-5 and x - 8/7 = y - 4/1 = z - 5/3 are coplanar. Find the common point. (07 Marks b. Find sine of the angle between the vectors 2î - 2ĵ + k and î - 2ĵ + 2k. (06 Marks b. Find the constant 'a' such that the vectors 2î - ĵ + k, î + 2ĵ - 3k and 3î + aĵ + 5k art 	s)
 2 a. Find the equation of the plane in the intercept form. (06 Marks b. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y - 6z = 8. (07 Marks c. Show that the lines \$\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}\$ and \$\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}\$ are coplanar. Find the common point. (07 Marks b. Find sine of the angle between the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$ and \$\hat{i} - 2\hat{j} + 2\hat{k}\$. (06 Marks b. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ and \$3\hat{j} + a\hat{j} + 5\hat{k}\$ and \$3\hat{k} + a\hat{j} + 5\hat{k}\$ and \$,
 b. Find the equation of the plane which passes through (3, -3, 1) and is perpendicular to the planes 7x + y + 2z = 6 and 3x + 5y - 6z = 8. (07 Marks) c. Show that the lines \$\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}\$ and \$\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}\$ are coplanar. Find the common point. (07 Marks) 3 a. Find sine of the angle between the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$ and \$\hat{i} - 2\hat{j} + 2\hat{k}\$. (06 Marks) b. Find the constant 'a' such that the vectors \$2\hat{i} - \hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are 	5)
 c. Show that the lines \$\frac{x-5}{4} = \frac{y-7}{4} = \frac{z+3}{-5}\$ and \$\frac{x-8}{7} = \frac{y-4}{1} = \frac{z-5}{3}\$ are coplanar. Find the common point. 3 a. Find sine of the angle between the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$ and \$\hat{i} - 2\hat{j} + 2\hat{k}\$. (06 Marks b. Find the constant 'a' such that the vectors \$2\hat{i} - \hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are \$\hat{j} + 5\hat{k}\$ and \$3\hat{j} + 3\hat{k} + 3\hat{j} + 5\hat{k}\$ are \$\hat{j} + 5\hat{k}\$ and \$3\hat{j} + 3\hat{j} + 5\hat{k}\$ and \$3\hat{k} + 3\hat{j} + 5\hat{k}\$ and \$3\hat{k} + 3\hat{k} + 3\hat{k}\$ and \$3\hat{k}	.е а
 c. Show that the lines \$\frac{-1}{4}\$ = \$\frac{-1}{4}\$ = \$\frac{-5}{-5}\$ and \$\frac{-7}{7}\$ = \$\frac{1}{1}\$ = \$\frac{-3}{3}\$ are coplanar. Find the common point, (07 Marks b. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$ and \$\hat{i} - 2\hat{j} + 2\hat{k}\$. (06 Marks b. Find the constant 'a' such that the vectors \$2\hat{i} - \hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$, \$\hat{i} + 2\hat{j} - 3\hat{k}\$ and \$3\hat{i} + a\hat{j} + 5\hat{k}\$ are coplanar. Find the constant 'a' such that the vectors \$2\hat{i} - 2\hat{j} + \hat{k}\$. 	
common point. 3 a. Find sine of the angle between the vectors $2\hat{i} - 2\hat{j} + \hat{k}$ and $\hat{i} - 2\hat{j} + 2\hat{k}$. b. Find the constant 'a' such that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are	r
 3 a. Find sine of the angle between the vectors 2î - 2ĵ + k and î - 2ĵ + 2k. b. Find the constant 'a' such that the vectors 2î - ĵ + k, î + 2ĵ - 3k and 3î + aĵ + 5k ar 	5)
b. Find the constant 'a' such that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} + 2\hat{j} - 3\hat{k}$ and $3\hat{i} + a\hat{j} + 5\hat{k}$ are	,
0. Find the constant a such that the vectors $21 - j + k$, $1 + 2j - 3k$ and $31 + aj + 5k$ ar	5)
conlanar (07 Marks	e a
$\begin{bmatrix} - & - & - & - & - \\ - & - & - & - & - &$	'
c. Prove that $ a \times b, b \times c, c \times a = a b c $. (07 Marks	5)
4 a. A particle moves along the curve $x = 1 - t^3$, $y = 1 + t^2$, $z = 2t - 5$ where t is the time. Fin	d
the velocity and acceleration at $t = 1$. (06 Marks	5)
b. Find the unit normal vector to the surface $xy + x + zx = 3$ at $(1, 1, 1)$. (07 Marks	5)
c. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $x = z^2 + y^2 - 3$ at the point (2 1 2)	ıt
(2, -1, 2). (07 Marks	5)
5 a. Find the directional derivative of $\phi = x^2yz + xz^2$ at the point (-1, 2, 1) in the direction of	of
$2\hat{i} - \hat{j} - 2\hat{k}$. (06 Marks	5)
b Show that the vectors $\vec{F} = (2xy + z^2)i + (x^2 + 2xy)i + (y^2 + 2zx)k$ is irrotational (07 Marks	3
= 2xy + 2y + 2y + (x + 2xy) + (y + 22x) x + 5 + 10 + 10 + 10 + 10 + 10 + 10 + 10	'
c. Given that $F = (x + y + 1)i + j - (x + y)k$, show that $F.curl F = 0$. (07 Marks	;)
	`
6 a. Using the definition show that $L[t] = \frac{1}{s^{n+1}}$. (05 Marks	5)
b. Find L[tcosat]. (05 Marks	5)
c. Find $L\left[\frac{\cos at - \cos bt}{t}\right]$. (05 Marks	5)
d. Find $L[\cos(at+b)]$. (05 Marks	5)
1 of 2	

- 8 a. Using Laplace Transform method solve $y'' + 2y' 3y = \sin t$ subject to the condition, y(0) = y'(0) = 0. (10 Marks)
 - b. By applying Laplace transform, solve the differential equation y'' + 4y' + 3y = 0 subject to the condition y(0) = 0 and y'(0) = 1. (10 Marks)